Thursday, 14 May 2015

Data Scientist vs Data Engineer

Data Scientist
A data scientist is responsible for pulling insights from data. It is the data scientists job to pull data, create models, create data products, and tell a story. A data scientist should typically have interactions with customers and/or executives. A data scientist should love scrubbing a dataset for more and more understanding.

The main goal of a data scientist is to produce data products and tell the stories of the data. A data scientist would typically have stronger statistics and presentation skills than a data engineer.


Data Engineer
Data Engineering is more focused on the systems that store and retrieve data. A data engineer will be responsible for building and deploying storage systems that can adequately handle the needs. Sometimes the needs are fast real-time incoming data streams. Other times the needs are massive amounts of large video files. Still other times the needs are many many reads of the data. In other words, a data engineer needs to build systems that can handle the 3 Vs of big data.

The main goal of data engineer is to make sure the data is properly stored and available to the data scientist and others that need access. A data engineer would typically have stronger software engineering and programming skills than a data scientist.

data-scientist-vs-data-engineer.jpg (594×389)

Conclusion
It is too early to tell if these 2 roles will ever have a clear distinction of responsibilities, but it is nice to see a little separation of responsibilities for the mythical all-in-one data scientist. Both of these roles are important to a properly functioning data science team.

2 comments: