Tuesday, 31 March 2015

10 Popular Analytic Tools in Business

Business analytics is a fast growing field and there are many tools available in the market to serve the needs of organizations. The range of analytical software goes from relatively simple statistical tools in spreadsheets (ex-MS Excel) to statistical software packages (ex-KXEN, Statistica) to sophisticated business intelligence suites (ex-SAS, Oracle, SAP, IBM among the big players). Open source tools like R and Weka are also gaining popularity. Besides these, companies develop in-house tools designed for specific purposes.

Commercial software

MS Excel: Almost every business user has access to MS Office suite and Excel. Excel is an excellent reporting and dash boarding tool. For most business projects, even if you run the heavy statistical analysis on different software but you will still end up using Excel for the reporting and presentation of results. While most people are aware of its excellent reporting and graphing abilities, excel can be a powerful analytic tool in the hands of an experienced user. Latest versions of Excel can handle tables with up to 1 million rows making it a powerful yet versatile tool.
SAS: SAS is the 5000 pound gorilla of the analytics world and claims to be the largest independent vendor in the business intelligence market. It is the most commonly used software in the Indian analytics market despite its monopolistic pricing. SAS software has wide ranging capabilities from data management to advanced analytics.

SPSS Modeler (Clementine): SPSS Modeler is a data mining software tool by SPSS Inc., an IBM company. It was originally named SPSS Clementine. This tool has an intuitive GUI and its point-and-click modelling capabilities are very comprehensive.

Statistica: is a statistics and analytics software package developed by StatSoft. It provides data analysis, data management, data mining, and data visualization procedures. Statistica supports a wide variety of analytic techniques and is capable of meeting most needs of the business users. The GUI is not the most user-friendly and it may take a little more time to learn than some tools but it is a competitively priced product that is value for money.

Salford systems: provides a host of predictive analytics and data mining tools for businesses. The company specialises in classification and regression tree algorithms. Its MARS algorithm was originally developed by world-renowned Stanford statistician and physicist, Jerome Friedman. The software is easy to use and learn.
KXEN: is one of the few companies that is driving automated analytics. Their products, largely based on algorithms developed by the Russian mathematician Vladimir Vapnik, are easy to use, fast and can work with large amounts of data. Some users may not like the fact that KXEN works like a ‘black box’ and in most cases, it is difficult to understand and explain the results.
Angoss: Like Salford systems, Angoss has developed its products around classification and regression decision tree algorithms. The advantage of this is that the tools are easy to learn and use, and the results easy to understand and explain. The GUI is very user friendly, a lot of features have been added over the years to make this a powerful tool.
MATLAB: is a statistical computing software developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms and creation of user interfaces. There are many add-on toolboxes that extend MATLAB to specific areas of functionality, such as statistics, finance, image processing, bioinformatics, etc. Matlab is not a free software. 

Open Source Software

R: R is a programming language and software environment for statistical computing and graphics. The R language is an open source tool and is widely used by the academia. For business users, the programming language does represent a hurdle. However, there are many GUIs available that can sit on R and enhance its user-friendliness.
Weka: Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning software, developed at the University of Waikato, New Zealand. Weka, along with R, is amongst the most popular open source software used by the business community. The software is written in the Java language and contains a GUI for interacting with data files and producing visual results and graphs.


2 comments: